1,643 research outputs found

    The Virtual Element Method with curved edges

    Full text link
    In this paper we initiate the investigation of Virtual Elements with curved faces. We consider the case of a fixed curved boundary in two dimensions, as it happens in the approximation of problems posed on a curved domain or with a curved interface. While an approximation of the domain with polygons leads, for degree of accuracy k≥2k \geq 2, to a sub-optimal rate of convergence, we show (both theoretically and numerically) that the proposed curved VEM lead to an optimal rate of convergence

    Basic principles of hp Virtual Elements on quasiuniform meshes

    Get PDF
    In the present paper we initiate the study of hphp Virtual Elements. We focus on the case with uniform polynomial degree across the mesh and derive theoretical convergence estimates that are explicit both in the mesh size hh and in the polynomial degree pp in the case of finite Sobolev regularity. Exponential convergence is proved in the case of analytic solutions. The theoretical convergence results are validated in numerical experiments. Finally, an initial study on the possible choice of local basis functions is included

    Serendipity Face and Edge VEM Spaces

    Full text link
    We extend the basic idea of Serendipity Virtual Elements from the previous case (by the same authors) of nodal (H1H^1-conforming) elements, to a more general framework. Then we apply the general strategy to the case of H(div)H(div) and H(curl)H(curl) conforming Virtual Element Methods, in two and three dimensions

    Serendipity Nodal VEM spaces

    Full text link
    We introduce a new variant of Nodal Virtual Element spaces that mimics the "Serendipity Finite Element Methods" (whose most popular example is the 8-node quadrilateral) and allows to reduce (often in a significant way) the number of internal degrees of freedom. When applied to the faces of a three-dimensional decomposition, this allows a reduction in the number of face degrees of freedom: an improvement that cannot be achieved by a simple static condensation. On triangular and tetrahedral decompositions the new elements (contrary to the original VEMs) reduce exactly to the classical Lagrange FEM. On quadrilaterals and hexahedra the new elements are quite similar (and have the same amount of degrees of freedom) to the Serendipity Finite Elements, but are much more robust with respect to element distortions. On more general polytopes the Serendipity VEMs are the natural (and simple) generalization of the simplicial case
    • …
    corecore